

INSTITUTO NACIONAL DE PESQUISA ESPACIAL — INPE

PROVA DISCURSIVA

TG28

DESENVOLVIMENTO DE PRODUTOS DE SENSORIAMENTO REMOTO PARA O MONITORAMENTO DE QUEIMADAS

SUA PROVA

 Além deste caderno contendo 5 (cinco) questões discursivas com as respectivas folhas de rascunho, você receberá do fiscal de prova as folhas de textos definitivos;

TEMPO

- Você dispõe de 4 (quatro) horas para a realização da prova;
- 2 (duas) horas após o início da prova, é possível retirar-se da sala, sem levar o caderno de questões;
- A partir dos 30 (trinta) minutos anteriores ao término da prova é possível retirar-se da sala levando o caderno de questões.

NÃO SERÁ PERMITIDO

- Qualquer tipo de comunicação entre os candidatos durante a aplicação da prova;
- Anotar informações relativas às respostas em qualquer outro meio que não seja no caderno de questões e nas folhas de textos definitivos;
- Levantar da cadeira sem autorização do fiscal de sala:
- Usar o sanitário ao término da prova, após deixar a sala.

INFORMAÇÕES GERAIS

- Verifique se seu caderno de questões está completo, sem repetição de questões ou falhas. Caso contrário, notifique imediatamente o fiscal da sala, para que sejam tomadas as devidas providências;
- Confira seus dados pessoais, especialmente nome, número de inscrição e documento de identidade e leia atentamente as instruções para preencher as folhas de textos definitivos:
- Para o preenchimento das folhas de textos definitivos, use somente caneta esferográfica, fabricada em material transparente, com tinta preta ou azul;
- Assine seu nome apenas no(s) espaço(s) reservado(s) no cartão de respostas;
- Caso você tenha recebido caderno de cargo diferente do impresso em suas folhas de textos definitivos, o fiscal deve ser obrigatoriamente informado para o devido registro na ata da sala;
- O preenchimento das folhas de textos definitivos é de sua responsabilidade e não será permitida a troca de folha de texto definitivo em caso de erro cometido pelo candidato:
- Para fins de avaliação, serão levadas em consideração apenas os textos das folhas de textos definitivos;
- A FGV coletará as impressões digitais dos candidatos na lista de presença;
- Os candidatos serão submetidos ao sistema de detecção de metais quando do ingresso e da saída de sanitários durante a realização das provas.
- Boa prova!

O INPE faz o monitoramento das ocorrências de focos de calor em toda América do Sul e apresenta os resultados a sociedade através do Programa Queimadas. As tabelas 1 e 2 a seguir, contém os agregados totais anuais e as médias mensais dos focos de calor detectados para os períodos de 2004 a 2013 e de 2014 a 2023 para o bioma Amazônia.

Tabela 1 - Totais anuais de focos				
	Totais	anuais		
	2004-2013	2014-2023		
ano 1	2.186.370	825.530		
ano 2	2.137.200	1.064.380		
ano 3	1.444.220	877.610		
ano 4	1.864.800	1.074.390		
ano 5	1.034.530	683.450		
ano 6	816.820	891.760		
ano 7	1.346.140	1.031.610		
ano 8	581.860	750.900		
ano 9	867.190 1.150.33			
ano 10	586.880 986.4			
Total	12.866.010	9.336.420		

Tabela 2 - Médias mensais de focos					
	2004-	2013	2014-2023		
	Médias mensais	Desvio Padrão mensal	Médias mensais	Desvio Padrão mensal	
jan	17.268	9748	16207	10717	
fev	7.604	4429	9092	3666	
mar	8.396	2974	12877	8414	
abr	6.406	1775	7858	3522	
mai	11.157	7611	10380	5252	
jun	26.764	23052	20387	4944	
jul	73.901	61694	52720	15271	
ago	302.005	181822	229345	67787	
set	413.020	221639	268098	75558	
out	190.047	62877	144737	39944	
nov	153.123	51498	112102	32948	
dez	76.910	32633	49839	29715	

Os gráficos 1 e 2 a seguir mostram o comportamento das duas séries ao longo do tempo.

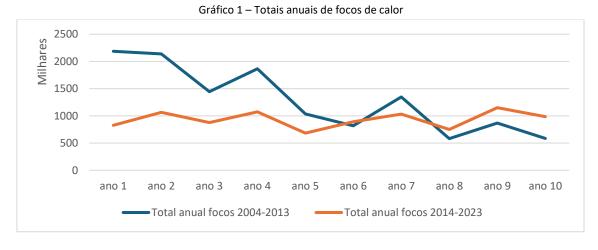
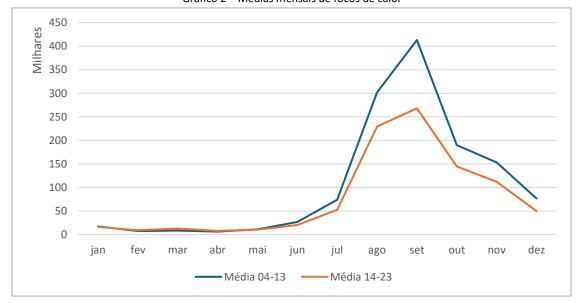



Gráfico 2 – Médias mensais de focos de calor

A análise do total de ocorrências de focos de calor nos dois períodos analisados mostra uma redução de 27,4 % na ocorrência durante o segundo período analisado.

Usando o pacote de análise de dados do Microsoft Excel, foi aplicado um teste de avaliação com significância a 5% em cada uma das séries, que apresentou os seguintes resultados:

Teste para os totais anuais:

	Total 2004-2013	Total 2014-2023
Média	1286601	933642
Variância	3,71357E+11	23201794507
Observações	10	10
Correlação de Pearson	0,210674563	
Hipótese da diferença de média	0	
gl	9	
Stat t	1,872131005	
P(T<=t) uni-caudal	0,046989359	
t crítico uni-caudal	1,833112933	
P(T<=t) bi-caudal	0,093978717	
t crítico bi-caudal	2,262157163	

Teste para as médias mensais:

	Média 04-13	Média 14-23
Média	107216,75	77803,5
Variância	17826973503	8337300359
Observações	12	12
Correlação de Pearson	0,995202619	
Hipótese da diferença de média	0	
gl	11	
Stat t	2,338413259	
P(T<=t) uni-caudal	0,019641031	
t crítico uni-caudal	1,795884819	
P(T<=t) bi-caudal	0,039282063	
t crítico bi-caudal	2,20098516	

A partir dos dados, gráficos e resultados aqui apresentados, usando o parâmetro de significância definido (5%), analise a ocorrência ou não de mudanças nos padrões identificados na detecção de focos de calor no bioma Amazônia nos períodos 2004 – 2013, e 2014 – 2023.

1			
2			
3			
4	 	 	
5	 	 	
6	 	 	
7	 	 	
8	 	 	
9	 		
10	 	 	
11	 	 	
12	 	 	
13	 	 	
14	 	 	
15	 	 	
16	 	 	
17			
18			
19	 	 	
20	 	 	
21	 	 	
22	 	 	
23	 	 	
24	 		
25	 		
26	 		
27	 	 	
28	 	 	
29	 	 	
30	 	 	

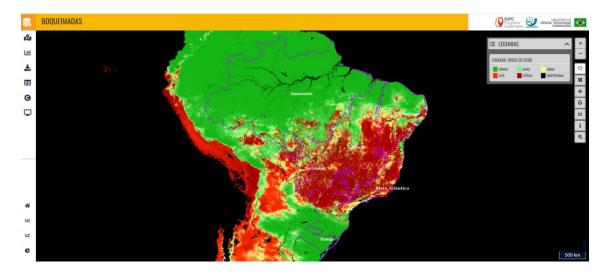
Tecnologistas do INPE que trabalham com produtos do sensoriamento remoto para o monitoramento de queimadas frequentemente lidam com grandes volumes de dados produzidos a partir de séries temporais de imagens de satélites. Neste contexto, considerando que as habilidades em ferramentas e linguagens de programação são essenciais para a aquisição, processamento e análise eficientes desses dados, responda ao que se pede a seguir.

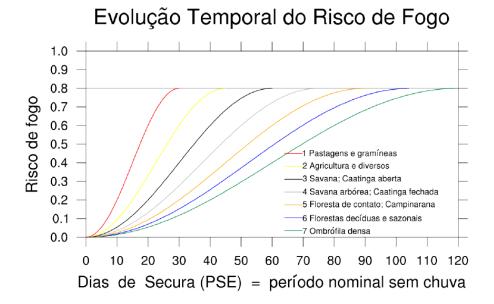
- A) Defina "Shell Script" e explique como ele pode ser útil para automatizar o processamento e manipulação de imagens em grandes quantidades. Cite como linguagens mais avançadas, como R e Python, podem ser integradas ao *shell script* para a criação de pipelines de processamento de imagens.
- B) A partir de uma série temporal de imagens multiespectrais de vários anos, cite três processos fundamentais que precisam estar presentes em um código escrito em R ou Python para a geração de um gráfico para a visualização dos valores históricos do Índice de Queimada Normalizado (Normalized Burn Ratio NBR) de uma determinada posição (X, Y) ao longo de todas as datas.

1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11	 	 	
12	 	 	
13			
14	 	 	
15	 	 	
16	 	 	
17	 	 	
18	 	 	
19	 	 	
20	 	 	
21	 	 	
22	 	 	
23	 	 	
24	 	 	
25	 	 	
26	 	 	
27			
28			
29			
30			

O monitoramento de desmatamento e queimadas tem sido motivo de debates constantes pela comunidade científica e pela sociedade no mundo todo, principalmente quando se pensa na mitigação de gases de efeito estufa. Luiz E.O.C. Aragão, Liana O. Anderson e colaboradores em "21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions", publicado na Nature Communications (2018), destacam o Sensoriamento Remoto como uma ferramenta essencial para a compreensão e enfrentamento dos desafios decorrentes da interação entre incêndios florestais e o sistema climático global.

Dados de sensoriamento remoto constituem-se na única maneira viável de monitorar o funcionamento de grandes biomas como o da Amazônia. O monitoramento de áreas queimadas, por exemplo, é crucial para compreender os impactos do fogo no ecossistema e tomar medidas adequadas de manejo e recuperação.


Assim, considere que você tenha sido contratado por uma empresa para desenvolver produtos de sensoriamento remoto para o monitoramento de queimadas e sua missão é fornecer suporte técnico e metodológico para uma proposta de mapeamento que permita atualizações frequentes. Como especialista, você deve considerar as melhores práticas e técnicas para garantir a eficácia e precisão desse sistema. Atualmente existem várias técnicas e abordagens que podem ser empregadas para garantir atualizações frequentes e precisas no mapeamento e monitoramento de queimadas utilizando sensoriamento remoto. Algumas dessas técnicas incluem o uso de diferentes plataformas como, por exemplo, MODIS, Sentinel e Landsat, cada plataforma com suas características específicas como, por exemplo, frequência de passagem, resolução espacial, temporal, espectral e radiométrica. Essas plataformas fornecem imagens regularmente e permitem uma cobertura ampla e rápida de áreas afetadas por queimadas. Além disso, o uso de algoritmos automatizados de detecção de incêndios pode agilizar o processo de identificação de focos de queimadas, garantindo uma resposta rápida e eficaz.


Neste sentido, elabore um texto de modo a responder como seria possível garantir essas atualizações utilizando técnicas de sensoriamento remoto.

- A) Destaque e explique as principais características das plataformas de sensoriamento remoto mencionadas que contribuem para garantir atualizações frequentes no mapeamento de queimadas.
- B) Descreva como a frequência de passagem de cada plataforma influência na capacidade de atualização frequente do mapeamento de queimadas.
- C) Discuta a importância da resolução espacial, temporal, espectral e radiométrica das plataformas de sensoriamento remoto mencionadas para garantir a precisão das atualizações no mapeamento de queimadas.

1		
2		
3		
4		
5	 	
6	 	
7	 	
8	 	
9	 	
10	 	
11	 	
12	 	
13	 	
14	 	
15	 	
16	 	
17		
18		
19	 	
20	 	
21	 	
22	 	
23	 	
24	 	
25	 	
26	 	
27	 	
28	 	
29	 	
30	 	

O cálculo do Risco do Fogo (RF) é um dos produtos do Programa de Queimadas do Instituto Nacional de Pesquisas Espaciais (INPE). O RF foi desenvolvido no Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), com base na análise da ocorrência de centenas de milhares de queimadas/incêndios nos principais biomas e tipos de vegetação do País durante as últimas décadas, em função das condições e históricos meteorológicos (SETZER et al., 1992; SISMANOGLU e SETZER, 2004d; SETZER et al., 2019).

Observando a figura e o gráfico acima, e com base em seus conhecimentos a respeito dessa estimativa meteorológica adotada pela equipe do INPE, apresente as variáveis que são consideradas no cálculo e explique seu grau de importância.

1			
2			
3			
4			
5	 		
6			
7			
8			
9			
10			
11	 	 	
12	 	 	
13	 	 	
14	 	 	
15	 	 	
16	 	 	
17	 	 	
18	 	 	
19	 	 	
20	 	 	
21	 	 	
22	 	 	
23	 	 	
24	 	 	
25	 	 	
26	 	 	
27	 		
28	 		
29	 	 	
30	 		

O sensor Advanced Baseline Imager (ABI) é o principal instrumento de imagem do GOES-16, fornecendo mais de 65% de todos os produtos derivados das medidas realizadas por este satélite. Um radiômetro passivo multicanal, o ABI captura imagens da Terra em 16 bandas espectrais, incluindo dois canais visíveis, quatro canais de infravermelho próximo e dez canais de infravermelho (Tabela 1). As bandas individuais são otimizadas para vários fenômenos atmosféricos. A banda visível "vermelha" do ABI (λ = 0,64 μ m) tem a resolução mais alta entre as 16 bandas a 0,5 km por pixel. As outras bandas nas regiões do visível e infravermelho próximo têm resolução de 1 km, enquanto as bandas na região do infravermelho térmico têm resolução de 2 km por pixel.

Atualmente, o satélite GOES-16 está posicionado em torno de 75 ° oeste e em um dos modos de operação o sensor ABI produz uma nova imagem de toda a América do Sul, em cada uma das 16 bandas, a cada 10 minutos.

canal	comprimento de onda nominal (μm)	resolução espacial (km)
1	0.47	1
2	0.64	0.5
3	0.86	1
4	1.37	2
5	1.6	1
6	2.2	2
7	3.9	2
8	6.2	2
9	6.9	2
10	7.3	2
11	8.4	2
12	9.6	2
13	10.3	2
14	11.2	2
15	12.3	2
16	13.3	2

Com base nos conceitos e leis fundamentais da radiação eletromagnética e os elementos de sensoriamento remoto discuta se os dados do sensor ABI que está a bordo do satélite GOES-16 podem ser utilizados para identificar focos de queimadas. Se possível, indique quais são as limitações para o seu uso em relação à detecção dos focos de queimadas.

1			
2			
3	 		
4			
5	 		
6	 		
7	 		
8	 		
9	 	 	
10	 	 	
11	 	 	
12	 		
13	 	 	
14	 		
15	 		
16	 		
17	 		
18			
19	 		
20	 		
21	 		
22	 		
23	 	 	
24	 		
25	 		
26	 		
27	 	 	
28	 	 	
29	 	 	
30	 	 	

Realização

